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Bifurcation of 2~-periodic solutions (2n-ps) of a system of second-order differential equations close to a Lyapunov system is 
investigated. The case of principal resonance, when an eigenfrequency of the linear oscillations of the unperturbed system 
is close to the frequency of the perturbing impulse, is considered. It is shown that, at certain values of the problem parameters, 
bifurcation of the 2n-ps that are generated from an equilibrium position, occurs. A constructive method is proposed for finding 
the bifurcation curve, as well as 2rt-ps on it. The examples considered are bifurcation of 2n-ps in the problem of the oscillations 
of a mathematical pendulum with a horizontally vibrating suspension point, and in the problem of the planar oscillations of an 
artificial satellite in a weakly elliptical orbit. The bifurcation curves for these examples are constructed and the corresponding 
2n-ps are found. © 1999 Elsevier Science Ltd. All rights reserved. 

1. O N  T H E  E X I S T E N C E  O F  P E R I O D I C  S O L U T I O N S  
O N  T H E  B I F U R C A T I O N  C U R V E  

Consider a system of second-order differential equations 

dx/dt = - toy + X(x, y) + ~ ' l ( X ,  y, t, It) 

dy/dt = o10¢ + Y(x, y) + ItF2(x, y, t, p.) 

(1.1) 

The right-hand sides of system (1.1) are analytic functions of the variables x and y in some sufficiently 
small neighbourhood of the origin x = y = 0, such that the expansions of X(x, y) and Y(x, y) in the 
convergent series of powers o fx  and y begin with terms of at least second degree 

X(x,y)= ~, •aqxly i, Y(x,y)= ~ YbiixiY i (1.2) 
k=2i+j=k k=2i+j=k 

o is a positive constant and g is the small parameter of the problem When g = 0 system (1.1) is a 
Lyapunov system. The perturbing functions Fi(x, y, t, g) (i = 1, 2) are analytic in g and 2n-periodic in 
t; their Fourier expansions at x = y = g = 0 are given by the formulae 

F i(O, O, t, O) = Aio + ~ (Aim cos mt+ Bim sin mr) 
m=! 

(1.3) 

Suppose system (1.1) has a principal resonance [1], that is, co is close to an integer n and, in addition, 
at least one of the quantities 

1 1 
Dl='~(Atn+B2n), D2 = ~(A2n - BIn) (1.4) 

does not vanish. Further, we put 

to = n + 6 (1.5) 
where ;5 is a small quantity. 

The problem of the existence of 2rt-periodic solutions (2rt-ps) of system (1.1) generated from an 
equilibrium position of the unperturbed (it = 0) system has been investigated before [1, 2]. It has been 
shown [2] that the plane of the parameters g, 6 may be divided into two subdomains, in one of which 
system (1.1) has one 2r~-ps and in the other three 2n-ps of the indicated form. The curve separating 
the two subdomains is known as the bifurcation curve of the solutions. 
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In this paper we will consider the analytical construction of the bifurcation curve and 2n-ps on it as 
convergent series in fractional powers of la. 

Following the well-known approach [1, 2], we will seek initial values 131 and 132 of the variables x and 
y that satisfy the following 2rr-periodicity conditions for solutions of system (1.1) 

x(2n, ~ ,  ~ ,  B) = 1~, y(2n, ~1, ~ ,  It) = I~ 

Any sufficiently small 13~ and 132 define when ~t = 0 a periodic solution with period 

T = 2n~-~ [1 +/~l(~l 2 + ~ ) t  +. . . l  

where the unwritten terms are small to a higher order than O(13~) (i = 1, 2) [3]. 
The required periodic solutions are analytic functions of 131,132 and I-t and may be expressed as 

x(t, I~!, lh, I~) = x(t, I~1, Ih, o) + Ittc~(t) + ~ ( t ,  Ih, Ih, It)] 

y(t, ~ ,  ~ ,  It) = y(t, ~1, ~ ,  o) + It[c2(t) + ~ ( t ,  ~1, I~, It)] 

(1.6) 

(1.7) 

(1.8) 

where the functions (I)1 are analytic in 131, 132 and p and vanish when Ix = 131 = 132 =0. Then the 2~- 
periodicity conditions (1.6) for x and y can be written in the form 

x(2n, I~1, 1~2, 0) + It[cl(2r0 + O1(2n, 131, I~, It)] = I~1 

y(2n, 131, l~, 0) + It[cz(2n) + ~2(2n, 131,132, It)l = 132 
(1.9) 

Substituting (1.8) into (1.1) and integrating the resulting equations for Ci(t ) with zero initial conditions, 
we obtain 

c,(2n) = 2n/),. + 0(8) (1.10) 

The numbers Di are determined from formulae (1.4). Expression (1.7) may be transformed, taking (1.5) 
into consideration, as follows [1]: 

2n = nT + 5 2~ _ 2gh.zt ([$~ + [$~)t + 0([ft+2 ) + 0(82) + 0(8[12t) (I. 11) 
n 

where 0(13 22+2)) and 0(151322) are terms whose order relative to 131 and 132 is at least 21 + 2 and 21, 
respectively. It follows from Eqs (1.1) that 

~d-~t t=nr.~=o = -nfh + 0(~ 2 ) + 0(88) 
(1.12) 

d~t ,=,r.,,=o = n~,~ + O(f3 z) + O(Sf~) 

Expanding the left-hand sides of (1.6) in series in the neighbourhood of t  = nTand  IX = 0, and taking 
(1.11) and (1.12) into consideration, we rewrite the periodicity conditions (1.9) in the form 

 tlh(13  + 13 ) t - s lh  + + v i  = o 
(1.13) 

, o u g h  (1312 + 13 )t _ - + ¥ 2  = 0 

where Vi are functions containing terms of orders no less than 0(1322+2), O(15213), O(~5132), O(15g), O(IX13), 
o ( g 2 ) .  

Next, following the well-known approach of [2], we will confine our attention to the case in which 
the quantities ~5~; are of the same order as ~. It then follows from conditions (1.13) that I~/= O(~/(~+~)), 

2//(22+ 1) 1/(22+ 1 ) 22 that is, 15 = O(ta ). Setting ~ = IX ,15 = ct~ , 13/= b/~ (the quantities ~t and b/are of the order 
of unity), we deduce from the 2zt-periodicity conditions (1.13) that 

ft ffi nh2tb2 (b~ + b~)t _ orb2 +/)I + 0(e) = 0 (1.14) 

f2 --- nh'ztbt (b~ +b~) l -°tbl -/)2 +O(e) = 0 
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System (1.14) yields the equation 

bj/~ - b2A = b~O~ + b202 + 0(~.)=0 (1.15) 

We will now assume, to fix our ideas, that D 2 ¢ 0. Then, solving Eq. (1.15) for b2 and substituting 
the result into the second equation of (1.14), we have 

g(b I,a, E) - f2(bl,b2(b I, e),a,e) =- b~ TM + (2/+ 1)pb i + 21q + O(e) = 0 (1.16) 

ar = ~ r  ( D ~  y p= , q | ,~ ,~ | 

(21+l)nl~ I 21nh21 r=~ DI"+D~) 

Analysis of Eq. (1.16) shows [2] that when 6 = 0 a real solution of Eq. (1.16) always exist, which 
depends continuously on the parameter a, which we denote by bl = b~ 1), with the property that Og/~b 
¢ 0 when bl = b~ 1), e = 0. This means that for any values of a and sufficiently small e, Eq. (1.16) has 
at least one real solution, which is expressible as a convergent series in powers of e. This solution is 
unique if the following inequality holds 

h2t(a - acr) < 0 (1.17) 

acr = (2/+ l)nh2l[(Dl 2 + I)2) t 1(2 In h2t) 2t ]t/f2t+t) 

But if inequality (1.17) holds with the inverse sign, then for sufficiently small e two further real solutions 
of this form exist [2]. When e = 0 and ct = a cr, Eq. (1.16) has exactly two real solutions. These parameter 
values correspond to a branch point of the solutions, that is, a point at which a new real solution of Eq. 
(1.16) is "born". 

We will now investigate the bifurcation of  solutions at small but non-zero e. A necessary condition 
for the birth of a new real solution of Eq. (1.16) is that ~/ab = 0. Thus, in order to find a value of tx 
corresponding to a branch point we must solve the following system of equations in ct and b i 

g(b I,a,e) = O, {p(bl,a,e) = ~g / ~l,l(bt,a,e) = 0 (1.18) 

When e = 0 the only real solution of system (1.18) is a cr, bl cr = - ( 2 / +  1)/(2/a) cr. The Jacobian 

3(g, ~o) I D(b, a) Ict=a¢~,bl =t,[ ~,e=o = (21 + l)21(bl cr )2/r l(nh2t ) 

does not vanish, and therefore, for sufficiently small ~, system (1.18) has a unique solution which may 
be expressed as a convergent series in powers of e 

b ;  - - b ~  r + E b l l  + . . . .  o{* --{x cr + £ o t  I + . . .  (1.19) 

In order to show that at values of the parameter a corresponding to (1.19) the solutions of Eq. (1.16) 
do indeed bifurcate, we expand the left-hand side of the equation in a Taylor series about b1' and a* 

B(b I -b~)  2 - A ( a - a * ) +  . . . .  0 (1.20) 

B = (2t+ l)l(bl) 2t-j + O(e), A = b~r/(nh2t)+ O(e) 

The quantities b~' and ct* depend on e; the dots denote terms of orders O((bl - b~)3), O((a  - ct*)2), 
O( (a  - a*)(bl - bl)), O(~). Equation (1.20) is known as the bifurcation equation [4]. If h2t(ct - a*) > 0 
and the quantity [a - or* [ is sufficiently small, Eq. (1.20) has exactly two real solutions with respect to 
bl, which may be expressed as convergent series in powers of ~1(1 ct - a* I). The coefficients of these 
series are analytic functions of ~. These solutions merge, becoming b~, as a --, a*. But if h2t(ot - or*) < 0, 
Eq. (1.20) has no real solutions with respect to bl. Thus at the values of a defined by formula (1.19) 
the solutions of Eq. (1.16) do indeed bifurcate, and hence do so the 2n-ps of system (1.1). Taking (1.5) 
into account, we can derive from (1.19) the following expression for co in terms of the parameter ~t 

CO - n + ll2t/f2t+l)a cr + O(l,t) (1.21) 
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which defines the bifurcation curve of 2rc-ps of system (1.1), dividing the domain of the parameters co 
and la into two subdomains: in one of them one 2r~-ps exists while in the other there are three 
2r~-ps of system (1.1), which turn into the trivial solution as ~t ~ 0. On the curve itself, system (1.1) has 
two 2r~-ps of the indicated form. 

2. A M E T H O D  F O R  F I N D I N G  27t-ps O N  T H E  B I F U R C A T I O N  C U R V E  

We will consider a method for the practical construction of the bifurcation curve and of 2~-ps on the 
curve. For simplicity we will confine the discussion to the case when l = 1. 

As shown previously, the bifurcation curve and 2n-ps on it should be sought as series in powers of 
the small parameter E = ~d/3 

0) = n+~CrE 2 + ~ k E  k, X(t)= ~Xk(t)~ k, y ( t ) =  ~,yk(t)f. ~ (2.1) 
k=3 k=l  k=l  

Substituting expressions (2.1) into (1.1) and equating coefficients of like powers of e, we arrive at 
the following systems of equations for the functions x~(t) andy~(t)(k  = 1, 2 . . . .  ) 

dx t I dt = - n y  t - CXk_lyi + G~ ~), dy~ I d t=  nx t + ak_lx  t + G¢2 tO (2.2) 

where GjCk)(j = 1, 2) are integral rational functions of xl . . . . .  xk-l, Y l , . . . ,  Y~-I, ~2 . . . . .  a~-2 and are 
2n-periodic in t. 

The general solution of Eqs (2.2) has the form 

x~ (t) = Met 2) cos n t -  MI ~) sin nt + q~, y~ (t) = MI 2) sin nt + MI ~) cos nt + ¥~ (2.3) 

where M~, m) (i = 1, 2 . . . .  ; m = 1, 2) are arbitrary constants and ~p~ and ~ are integral rational functions 
of Mt m) . . . . .  M~_~, ~t2 . . . .  , a~-2 and 2rt-periodic of t. 

We introduce the notation 

1 2x 
111) -- ~ ! { (-¢tt-I Yl + G~ k) ) cos nt + (ot~_ix I + G<2 k) ) sin nt}dt  

1 2n 
I12) = ~ x  ~ {(-ak-ly '  + G~k))s innt-  (ak-lXt + G~2k))c°snt}dt 

The equations representing necessary and sufficient conditions for system (2.2) to have 2rc-ps have 
the form 

II t) = 0, l = 1,2 (2.4) 

Let us consider the nature of the dependence of/~) on M~m) i. Since the expansions of X(x,  y)  and 
Y(x ,y )  in powers o fx  andy  begin the terms of degree at least 2, it follows that when k = 2q (where q 
is a natural number) Gi ~k) is a linear function ofxo+ ~, xo+2 . . . .  ,xk_~,yo+~,yo+z,...,y~_l, but the quantities 
Xq andyq occur in the function .Gj to second and first degree only. In the integrand o f /~ ,  the coefficients 
of the second powers of M(q m) and the first powers of M~m~ are cubic polynomials in sin nt and cos nt, 
whose integrals from 0 to 2n always vanish. T hus , /~  depends linearly on M~q m), Mq¢~t . . . . .  M~7_) 2 and 
does not depend on M~ m), i > k - 2. It can be shown similarly that for k = 2q + 1 (q = 2, 3 . . . .  ) the 
integrals/~0 depend linearly on M~q'~t, M~q'~ . . . . .  M~m_t and do not depend on M! m), i > k - 2. It can 
also be shown that for k = 2q + l(q = 2, 3 , . . . )  the integrals/~) contain only terms of second and first 
degree in M~q m) (q = 2, 3 . . . .  ). 

We note further the following relations 

1,2; t 1,2) ~ - ~M.(m) (k >I i + 2; m = = 
(2.5) 
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~2/(1) 32 I (0  
u Xk_p_ s 

(m) (n) = aM~ aM) ,,,,,i_t,~;~(m)~Ml'Oj_s (k>~p+s+2; n=l ,2;  m=l ,2;  /=1,2) 

which may be proved by mathematical induction. 
We will now describe an algorithm for calculating the constants M~, m), ct i. For k = 1, 2, Eqs (2.4) are 

identically true. For k = 3, Eqs (2.4), taking (1.2) and (1.4) into account, may be written explicitly as 
(2.6) 

Z i/(m)rtA/(i)x2 a-{i'¢(2)"21 '~crlg(ra) - ( - 1 ) r a D r a  = O, 1 ira I L%Lva I ] Tl3Va i ] j - - v .  ~va I 

= (3ao3 - b12 + a21 - 3b3o) /8  

(2.6) 

It can be shown that ;~ = nh2, so that, by the results of Section 1, we have 

== =3[Z(I~2+D~)/4]  ~ 

System (2.6) has exactly two solutions, one of which has the form 

M~ ") = 2(-1)*D m/[2z(D 2 + D22)1 )~, m = 1,2 (2.7) 

The quantities M1 (m), calculated from formulae (2.7), correspond to an isolated 2n-ps of system (1.1), 
which exists for any values of the parameter ~t, and for which the Jacobian of system (2.6) is always 
non-zero. Both on and off the bifurcation curve, this solution may be constructed by the method 
described in [1]. Following that method, the quantities Mt m) (i >- 2) are uniquely determined from the 
system of equations (2.4) for k = i + 2. When that is done, the expressions for ~ t  m) will depend on aj 
(i <~ j). The coefficients of the bifurcation curve ccj will be determined in the process of constructing 
the second 2n-ps of system (1.1), for which M~, m) are determined from the formulae 

M~ m) = (-1)m+lDm/[2Z(DI 2 + D22)] )~, m = 1,2 (2.8) 

We will consider in detail a method for constructing this solution. Let A1 denote the Jacobian of system 
(2.6). The determinant AI vanishes for the solution (2.8). As shown previously, system (1.1) has a unique 
2n-ps on the bifurcation curve satisfying this condition. Therefore, to determine Mi (m) (i >I 2), we shall 
supplement the 2n-periodicity conditions (2.4) by the uniqueness condition, which may be satisfied by 
an appropriate choice of my. 

For k = 4, the system o f  equations (2.4) may be written in the form 

al,<') + #.> al(4t) M9 (i) + ~ t n  2 -o~3M(i) =0, l= 1,2 
aM ') (2.9) 

This system is linear in M~ ra). The quantities/4 -(l) are defined if M(m)i are known. Using relations (2.5), 
one can readily show that the determinant of the matrix of system (2.9) is equal to AI and therefore 
vanishes. The consistency condition for system (2.9) can always be satisfied by an appropriate choice 
of (x 3. The equations of system (2.9) are linearly dependent, the second equation being obtained by 
multiplying the first by 

/" al(2) V 310) ~-i ( a l ( 2 )  'V" 3i(I) ,~-1 - i  v'3 / ~'3 / - /  3 / ' 3  / 

J 
(2.10) 

This means that M~ m) cannot be determined uniquely from system (2.9). Taking formulae (2.5) into 
account, we write the system of equations (2.4) for k = 5 

al$l) 3t(t) 
aM~ 1)/143(1) + ° ' 3  M(2) _ (Z4M~I) ~ i(/)j, li~(I) ll~(2), _ T'5 ~t~'~2 ,~'z2 ) - - 0 ,  aM[2)  J 

where i(~ ) are polynomials of degree 2 in M~ "). 

1=1,2 ( 2 . 1 1 )  
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System (2.11) is linear in m~ m). The determinant of the matrix of this system is A~ = 0. This enables 
us to eliminate the unknowns 3f(3 m). Indeed, after multiplying the first equation by ~1 and adding the 
result to the second, we obtain 

"5 ~"a2 ' : 'a2 / T I I ~ 5  ~ 'a5 ' ' v ' 2  ; - - v  (2.12) 

Equations (2.12) contain only terms of first and second degree in M{2 m). Together with the first equation 
of (2.9), Eq. (2.12) forms a system of equations in M~ m) which has a unique solution, provided that its 
Jacobian, which we will denote henceforth by A 2, vanishes. 

The equation A 2 = 0,  together with the first equation of (2.9), forms a system of linear equations in 
M~ m). The determinant of the matrix of this system, calculated using (2.5), is 

A = 24x3M~ 2)[(M~ t))2 + (M~,.))2 ]2 (2.13) 

and therefore does not vanish. Hence the system has a unique solution. After M~2 m) has been determined 
from Eq. (2.12), c~4 is uniquely determined. We also observe that Eq. (2.12) is the condition for 
consistency of the system of equations (2.11), which is linear in M~ m). 

To determine M~3 m) uniquely, one must use the 2rt-periodicity conditions for the system of linear 
equations for k > 5. 

We introduce the notation 

{ hi(t) ~11(~) ](al(I)  "~-~ _ 5 5 u 3  - y ~ - - + - -  - -  

T 2  / ~M2 ~M2 J~e~MI ) - (I) (I) (1) 
(2.14) 

It then follows from the equations A 2 = 0 and from (2.14) that 

ot o + at3 ( ,  _- bM(, ) ~y,-~2(~) T 2 ~ - 0 ,  re:l.2 (2.15) 

In view of relations (2.5), Eqs (2.4) for k = 6 become 

~l~t) M~ °-'- v'3 '~'<2)~- °'s uO)± v'5 "(2)-asM~° +i~t)=O, /=1,2 (2.16) 
~M~I) ~- z~(2) " 4  T ~j- ' /~ ' '3 -'- zj,(2) "3  

u~,~ I ut vJ 2 u~w 2 

Let us consider a linear combination of equations (2.11) and (2.16):/~2) + 71i~1) + y2i~D = O, which, 
using (2.10) and (2.15), we transform into 

+ + i g ) +   5i5 (') = 0 (2.17) 

Equation (2.17) does not depend o n  M~ m) and M4 ~m), and it may be satisfied by suitable choice of as. 
Note that condition (2.17) itself guarantees the consistency of the system of equations (2.11), (2.16), 

1 (m) (m) which "s linear in M~ and M4 . 
n m) r (2) 1) O e could try to eliminateM { 4 f o m  (2.16) through the equationI6 + ylI~ = 0 (which does not 

m) contain M ~ 4), but, by (2.17), the equation thus obtained will be linearly dependent on Eqs (2.11). Thus, 
(m) unique determination of M~ requires the use of Eqs (2.4) for k = 7 

~i(3 t) a~(I) ~1(t) Jta(D_,_ °~3 u(2)+ " s  M 0) + ~l(s t) M(2) ,,, M(t) 
3M~,),..5 TM ~M~2),..5 ~ 4 ~ 4 - , , . ,  , +  (2.18) 

+iy~t)(M~t),M~2))=O, /=1,2 

where I7{O(M~ 1), M~ z)) are polynomials of the second degree in M~ "). 
Proceeding as for (2.17), we obtain from Eqs (2.16) and (2.18) an equation l~z) + WI70) + 72i~1) = 0 

that does not contain the unknowns Mt m) a n d  M~ m) 

( M(5) + ate" a6(M 2) + X2asM  + ..c2)..,_ 
2~a.~2 ) , ~M(2,),.. 3 ) " t  , ' " 3  . . . .  3 ' " -  (2.19) 
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+vdp)(uf),u~(2))+ v21g ) =0 

Equation (2.19) depends only on the u n k n o w n s  M~ m) and the parameters a6; together with the first 
equation of (2.11), it forms a system of equations in Mt m) which has a unique solution, provided that 
its Jacobian A3 vanishes. The first equation of (2.11) and the equation A3 = 0 form a system of equations 
which is linear in M~ m). The determinant of its matrix is equal to A (2.13) and consequently does not 
vanish. This means that the system has a unique solution. After Mt m) has been determined from Eq. 
(2.19), (*6 is uniquely defined. 

Let us suppose, then, that for k = 2p - I we have already found M~ m) . . . . .  M(pml, (*2 . . . . .  ('2p-2, and 
the following equations from (2.4) have been written out 

f o r k = p + 2  

at~ ° u ( l ) + ~ u ( 2 )  7.) 
ap+2 p aM~2 ) p - a . + v ~ o +  =o 

for k = p + 3  
al (t) al (o al (t) al~ l) nO) t,,3 M(2)" . ~*5 a,(1)_ ~_M(2) .~ u(1) ±'i(l) --t~p+2,v, ! -r *p+3 + 2' "+' a n ,  (') p =o 

. , . . . . . . , , , . . . . . . , . . . .  . . . • • • • • * . . . . .  

for k = 2p (2.20) 

z:(t) al (t) 2 z,(t) a,(t) 
"*3 l~'(l) _ . r ~ , , , 2 p _  2 
aM~l) '"2t,-2 aM 2 am 2 

:~,(1) ~1(i) 
_ , _ ~  A~O) a._~2L ~.,¢(2) ;(t) - 0 ,  I = 1.2 . . . .  ~--~pl) ""p - aM~2)'"p - a 2 p  -'M~') +'2p - 

These are all equations in the unknowns M(p m) . . . . .  M~2~_)2 . In addition, the conditions for the solution 
to be unique imply the following relations 

for k = 3  

al(2) a13 (1) _ 
+ ~. a--g~.~ - 0  

aM~ ") 

for k = 5  
a15(2) . .  ~t(1) ~0) 

t'*5 + v*3 ~-~2c~) * n  ~ Y23-~V =0 
v,r ,  2 v*'~ I 

. . . . . . . . . . . . . . . . .  (2.21) 

for k = 2 p -  1 

ai(2)  3r(I) ~1(,) a t ( l )  

aM(m) + Y l ~ + Y 2  +-..+Yt,-I =0,  re=l ,2  
p- I  ° Imp- I  ° p -2  I 

The quantities )'1 . . . . .  7p-~ have already been calculated, by formulae analogous to (2.10) and (2.14). 
(rn) m) m l In Eqs (2.20), apart from the unknowns M~ , . . . ,  M(,_2, there is still an undeter ined quant'ty 

a~,_~. Relations (2.21) enable us, after eliminating the unknowns Mi (m) (i = p . . . . .  k + 2) from Eqs 
(2.21), to write down an equation for a~,_,, which may be obtained as a linear combination of Eqs (2.20) 

2(2) ,,, i o) +. ,  1o) _~. ~(~) + +" I °) = 0 p + I 1  2p 1'2 2p- ,  T 1'3"2p--2 "'" 1"p--I p+2 

To determine M ~  ), we add Eqs (2.4) for k = 2p + 1 to Eqs (2.20) 

a6 (t) u2(~) . a~(~,~ ) , , (2)  + ats (°  n o )  . alp ,.(2) * +... 
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~ M ( 2 )  _ot2vM~t) ~ +i(t) t u ( l )  M(p2)) = 0, 1 = 1,2 (2.22) ...+~M~",,, +~M~+, p +-2+,+,,.--,,,. 

A linear combina t ion  of  Eqs  (2.20) and (2.22) 

(2) + ~ , ( I )  +~, ,(1)+731(2~_1 (1) 2p+l l | '2p+l  12+2p +""  + ?p-lip+3 = 0 (2.23) 

contains only the unknowns M~p ), which occur in the first and second powers, as well as the unde te rmined  
quant i ty  <~zp T h e  first equa t ion  of  (2 20) and Eq  (2 23) fo rm a system of equat ions  in M ~m) The  

• " . . , • . ' + . . P • 

u m q u e n e s s  c o n d m o n  for  the solutions of  thin system, toge ther  with the first equaUon of  (2.20), fo rm a 
m) system of  equat ions  which is l inear in M ~ p. The  de te rminan t  of  the matr ix  of  this system equals  A (2.13) 

m) and  consequent ly  does  not  vanish. Thus,  the system has a unique solution. Once  the MC~ have been  
found,  the quant i ty  ct2p is de t e rmined  f rom Eq. (2.23). 

3. E X A M P L E S  

The results of Sections 1 and 2 can be used to investigate bifurcation of the motions of mechanical systems of 
quite a wide class• We will consider two examples. 

A pendulum with vibrating suspension point. Letx be the angle by which a pendulum of length l, whose suspension 
point is vibrating horizontally with amplitude a and frequency f~, deviates from the vertical. The dissipative forces 
acting on the pendulum are given by the Rayleigh function R = Z.~2/2 (where the dot, both here and later, stands 
for differentiation with respect to dimensionless time ~ = D.t), The equation of motion for the pendulum is 

Ji + 7,,i+tOo 2 sinx = esinxeosx; tO 2 = gl(fl21), e = a l l  (3.1) 

Equation (3.1) may be replaced by an equivalent system of two equations 

= -o~ 0 sin x + (e I to 0) sin x cos x -  ~0', -+ = tOoy (3.2) 

Let us assume that e and ~ are small quantities of the same order, i.e., Z = be <~ 1, b = 0(1). Under other 
assumptions as to the orders of smallness of e and ~, the problem of the bifurcation of 2rc-ps of this pendulum has 
been studied before [5]. 

System (3.2) is a system of type (1.1). Therefore, using known results [2] and those of Section 2, if o30 is close 
to unity, one has bifurcation of the 2=-periodic oscillations of the pendulum which, when e = 0, become a stable 
equilibrium position (x = 0). The bifurcation curve and the 2n-ps on it, constructed by the method presented in 
Section 2, are 

4 

to 0 = 1 + e ~  .3-2 ~ 18-e~(45+64b2)1256+O(e  2) 

x I = eJ~ sin x - ~ b. 2 ~j cos x + e((6 - 64b2) sin x + sin 3x) / 48 + O(e ~ ) 

x 2 = - e / ~ .  2 . 2  ~j sin x.-  e ~ 8b cos x - e((57 + 448b 2) sin x -  4 sin 3x) 124 + O(e ~ ) 

On crossing the bifurcation curve, the 2r~-ps (3.4) either disappears or generates two new 2n-ps. 

(3.3) 

(3.4) 

(3.5) 

Oscillations of  an artificial satellite in the plane of  a weakly elliptical orbit. The planar motions of an artificial satellite, 
considered as a rigid body, about its centre of mass in a central Newtonian gravitational field in an elliptical orbit 
are described by the following equation [6] 

(1 + ecosv)d2¥1dv  2 - 2esin v a i l  dv + to~ sin ¥ c o s ¥  = 2esinv (3.6) 

where V is the angle between one of the principal central axes of inertia of the satellite in the orbital plane and 
the radius vector of its centre of mass, e is the orbit eccentricity and v is the true anomaly; col = 3(A - C)/B, where 
A, B and C are the moments of inertia of the satellite about its principal central axes. In the case of a circular orbit 
(e = 0), Eq. (3.6) has a particular solution V = 0, corresponding to an equilibrium position of the satellite in an 
orbital system of coordinates. If e <~ 1, the equilibrium W = 0 gives way to oscillations, which are odd functions of 
v and 2+z-periodic. If  m0 ~ 1, these solutions bifurcate [6]. Other methods [6-8] have yielded an approximate 
expression for the bifurcation curve. Using the technique of Section 2, we will derive a more accurate expression 
for the bifurcation curve. To that end, we replace Eq. (3.6) by an equivalent Hamiltonian equation system 
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with Hamiltonian 

dql d v f  aH lap, @ l  d v f  -~H I3q (3.7) 

i 2 _ . e c o s v  . q2 +lto0Z(l+ecosv)s in2f . .  q ) - 2 e q s i n v  
H f - ~ p  -I 2( l+eeosv)  2 \ l + e c o s v )  

(3.8) 

The canonically conjugate coordinate q and momentum p are introduced by the formulae 

q p=--~  (3.9) 
¥ =  1 + e c o s v '  

The canonical change of variables q, = "~((oo)q, p, = p/~/(o%) reduces system (3.7) to the form of (1.1). The 
bifurcation curve and 2n-ps on it, found by the method of Section 2, are 

o~ 0 = 1 +e ~ .3.2 ~ 14 +e ~ .3.2 ~ j / 3 2 - e  2 .491256+ O(e ~ )  (3.10) 

¥1 (v) = e ~j. 2 )~ sin v -  e(l 8sin v -  sin 3v) 124-  • ~j. 2 -~j sin 2v ÷ 

+e ~ .2~(190sinv+5sin3v+sin5v)1640+e2(45sin2v-13sin4v)1240+O(e~) • (3.11) 

¥2(v)  = e~J • 2 ~  sin v + e ( 9 s i n v -  4sin3v)/12 + e ~j .2~J sin 2v + 

+e ~ -  2 ~j (5 sin v + 5 sin 3 v -  2 sin 5v) / 40 + e 2 (225 sin 2v - 52 sin 4v) / 120 + O(e ~ )  (3.12) 

On crossing the bifurcation curve, solution (3.11) either disappears or generates two new 2n-ps. 
To construct expansions (3.3)-(3.5), (3.10)-(3.12), we have written a program implementing the algorithm of 

Section 2 in the MAPLE analytical transformation system. 
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